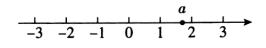
2020 年北京市高级中等学校招生考试


学 数

		姓名	准書	考证号[]	考场号	座位号□□□				
	考	1. 本试卷	送共7页,共三道 <i>フ</i>	大题,28 道小题。满分	 100 分。考试试卷 12	20 分钟。				
	生	2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。								
	须	3. 试题智	答案一律填涂或书写	写在答题卡上,在试卷上	二作答无效 。					
	知	4. 在答是	题卡上,选择题、 作	,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。						
		5. 考试结	吉東,将本试卷、答	答题卡和草稿纸一并交 回	1 。					
一、选	择题(ス	 本题共 16 タ	分,每小题 2 分)							
第	1—8 题	均有四个进	选项,符合题意的i	选项只有一个.		\neg				
1. 右图	是某几	」何体的三袖	见图,该几何体是							
(A)	(A) 圆柱			(B) 圆锥						
(C))三棱铂	维		(D) 长方体						
2. 2020	9年6月] 23 日,非	公斗三号最后一颗全	と球组 网卫星从西昌卫星	!发射中心发射升空,	6月30成功定点于距离地				
球 3	6 000 2	公里的地球	同步轨道.将36	000 用科学记数法表示原	立为					
(A)	0.36	×10 ⁵	(B) 3.6×10^5	(C) 3.6×10^4	(D) 36×10^3					
3.	如图,	AB与CD	相交于点,则下列	结论正确的是		A				
(A)	∠1=	∠2		(B) $\angle 2 = \angle 3$		0 ²				
(C)	∠1>	∠4+∠5		(D) ∠2<∠5		C 4 5 B				
4. 下列	图形中	,既是中心	心对称图形也是轴列	对称图形的是						
_	\setminus									
(A))		(B)	(C)	(D)					

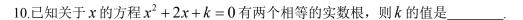
5.正五边形外角和为

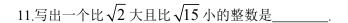
(A) 180° (B) 360° (C) 540° (D) 720°

6.实数 a 在数轴上的对应点的位置如图所示.若实数 b 满足 -a < b < a,则 b 的值可以是

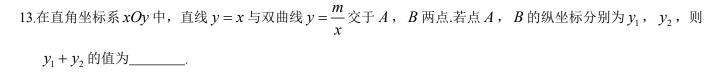
- (A) 2
- (B) -1 (C) -2
- (D) -3

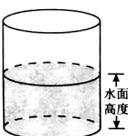
7.不透明的袋子中有两个小球,上面分别写着数字"1""2",除数字外两个小球无其他差别.从中随机摸出一个小球, 记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是

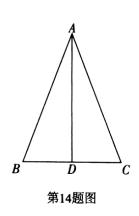

- (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$

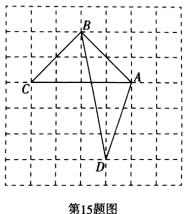

8.有一个装水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时.在注水过程中,水 面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应 的注水时间满足的函数关系是

- (A) 正比例函数关系 (B) 一次函数关系
- (C) 二次函数关系 (D) 反比例函数关系








12. 方程组
$$\begin{cases} x - y = 1 \\ 3x + y = 7 \end{cases}$$
 的解为______.

14. 如图, 在 $\triangle ABC$ 中, AB = AC, 点 D在 BC上 (不与点 B, C重合). 只需添加一个条件即可证明 $\Delta ABD \cong \Delta ACD$,这个条件可以是_____(写出一个即可).

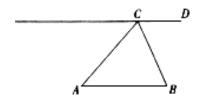
15. 如图所示的网格是正方形网格, A, B, C, D 是网格线交点,则 ΔABC 的面积与 ΔABD 的面积的大小关系为

16. 下图是某剧场第一排座位分布图.

甲、乙、丙、丁四人购票, 所购票数分别为 2, 3, 4, 5. 每人选座购票时, 只购买第一排的座位相邻的票, 同时 使自己所选的座位号之和最小. 如果按"甲、乙、丙、丁"的先后顺序购票,那么甲购买1,2号座位的票,乙 购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能 购买到第一排座位的票,写出一种满足条件的购票的先后顺序

三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题6分,第 25 题 5 分, 第 26 题 6 分, 第 27-28 题, 每小题 7 分)解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$\left(\frac{1}{3}\right)^{-1} + \sqrt{18} + \left|-2\right| - 6\sin 45^{\circ}$$


18. 解不等式组:
$$\begin{cases} 5x - 3 > 2x \\ \frac{2x - 1}{3} < \frac{x}{2} \end{cases}$$

19. 已知 $5x^2-x-1=0$, 求代数式(3x+2)(3x-2)+x(x-2)的值.

20. 已知:如图, ΔABC 为锐角三角形,AB = AC,CD//AB.

求做:线段BP,使得点P在直线CD上,

$$\mathbb{H} \angle ABP = \frac{1}{2} \angle BAC$$

作法: ①以点 A 为圆心, AC 长为半径画圆,交直线 CD 于 C,P 两点;

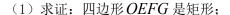
②连接BP

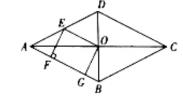
线段BP就是所求线段

- (1) 使用直尺和圆规,依作法补全图形(保留作图痕迹);
- (2) 完成下面的证明

证明: :: CD// AB

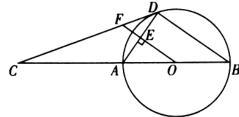
- AB = AC
- ∴点B在⊙A上.


又::点C,P都在OA上


$$\therefore \angle BPC = \frac{1}{2} \angle BAC$$
 (______) (填推理依据).

$$\therefore \angle ABP = \frac{1}{2} \angle BAC$$

21. 如图, 菱形 ABCD 对角线 AC, BD 相交于点 O, E 是 AD 的中点, 点 F, G 在 AB 上,


 $EF \perp AB$, OG//EF.

- (2) 若 AD = 10, EF = 4, 求 OE 和 BG 的长
- 22. 在平面直角坐标系 xOy 中,一次函数 $y = kx + b(k \neq 0)$ 的图象由函数 y = x 的图象平移得到,且经过点 (1,2).
 - (1) 求这个一次函数的解析式;
 - (2) 当x>1时,对于x的每一个值,函数 $y=mx(m\neq 0)$ 的值大于一次函数 y=kx+b的值,直接写出 m 的取值范围.

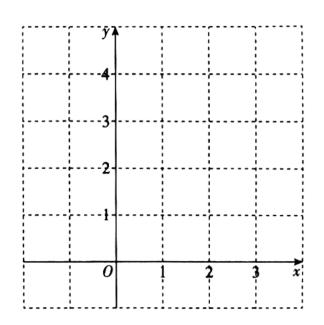
- 23. 如图,AB 为 $\odot O$ 的直径,C 为 BA 延长线上一点,CD 是 $\odot O$ 的切线,D 为切点, $OF \perp AD$ 于点 E ,交 CD 于点 F .
 - (1) 求证: $\angle ADC = \angle AOF$;
 - (2) 若 $\sin C = \frac{1}{3}$, BD = 8, 求 EF 的长.

24. 小云在学习过程中遇到一个函数 $y = \frac{1}{6}|x|(x^2 - x + 1)(x \ge -2)$.

下面是小云对其探究的过程,请补充完整:

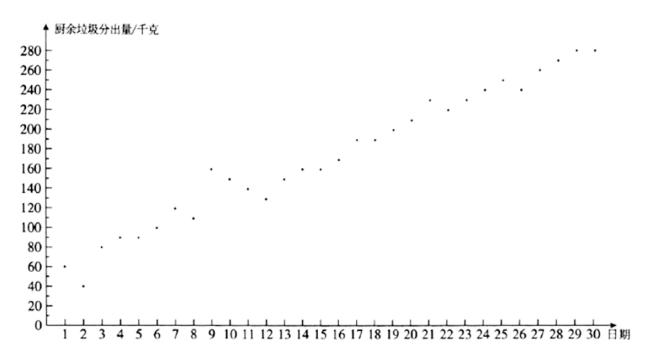
(1) 当 $-2 \le x < 0$ 时,

对于函数
$$y_1 = |x|$$
 ,即 $y_1 = -x$,当 $-2 \le x < 0$ 时, y_1 随 x 的增大而______,且 $y_1 > 0$;


对于函数
$$y_2 = x^2 - x + 1$$
, 当 $-2 \le x < 0$ 时, y_2 随 x 的增大而______, 且 $y_2 > 0$;

(2) 当 $x \ge 0$ 时,

对于函数 y, 当 $x \ge 0$ 时, y 与 x 的几组对应值如下表:

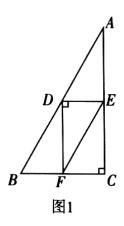

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	• • •
у	0	1/16	$\frac{1}{6}$	7 16	1	95 48	$\frac{7}{2}$	• • •

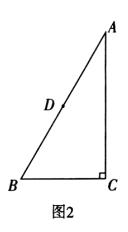
结合上表,进一步探究发现,当 $x \ge 0$ 时,y随x的增大而增大,在平面直角坐标系xOy中,画出当 $x \ge 0$ 时的函数 y 的图象.

(3) 过点(0,m)(m>0)作平行于x轴的直线l,结合 (1) (2) 的分析,解决问题:若直线l与函数 $y = \frac{1}{6}|x|(x^2-x+1)(x \ge -2)$ 的图象有两个交点,则m的最大值是______.

- 25. 小云统计了自己所住小区 5 月 1 日至 30 日的厨余垃圾分出量(单位: 千克),相关信息如下:
 - a. 小云所住小区 5 月 1 日至 30 日的厨余垃圾分出量统计图:

b. 小云所住小区 5 月 1 日至 30 日分时段的厨余垃圾分出量的平均数如下:

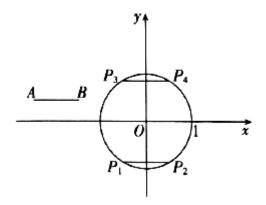

时 段	1 日至 10 日	11 日至 20 日	21 日至 30 日
平均数	100	170	250


- (1) 该小区 5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数);
- (2) 已知该小区 4 月的厨余垃圾分出量的平均数为 60,则该小区 5 月 1 日至 30 日的厨余垃圾分出量的平均数约为 4 月_______倍(结果保留小数点后一位);
- (3)记该小区 5 月 1 日至 10 日的厨余垃圾分出量的方差为 s_1^2 ,5 月 11 日至 20 日的厨余垃圾分出量的方差为 s_2^2 ,5 月 21 日至 30 日的厨余垃圾分出量的方差为 s_3^2 .直接写出 s_1^2 , s_2^2 , s_3^2 的大小关系.
- 26. 在平面直角坐标系 xOy 中, $M(x_1, y_1)$, $N(x_2, y_2)$ 为抛物线 $y = ax^2 + bx + c(a > 0)$ 上任意两点,其中 $x_1 < x_2$.
 - (1) 若拋物线的对称轴为x=1, 当 x_1 , x_2 为何值时, $y_1=y_2=c$;
 - (2) 设抛物线的对称轴为x=t. 若对于 $x_1 + x_2 > 3$. 都有 $y_1 < y_2$, 求t的取值范围.

27. 在 $\triangle ABC$ 中, $\angle C = 90^{\circ}$, AC > BC, D是 AB 的中点, E为直线 AC上一动点,连接 DE, 过点 D作

 $DF \perp DE$, 交直线 BC 于点 F, 连接 EF.

- (1) 如图 1, 当 E 是线段 AC 的中点时,设 AE = a, BF = b,求 EF 的长 (用含 a,b 的式子表示);
- (2) 当点 E 在线段 CA 的延长线上时,依题意补全图 2,用等式表示线段 AE, EF, BF 之间的数量关系,并证明.



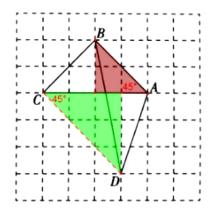
28. 在平面直角坐标系 xOy 中, $\bigcirc O$ 的半径为1, A , B 为 $\bigcirc O$ 外两点, AB=1 .

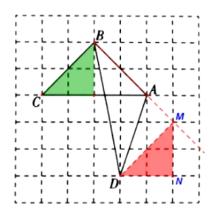
给出如下定义: 平移线段 AB ,得到 $\odot O$ 的弦 A'B' (A', B'分别为点 A ,B 的对应点),线段 AA'长度的最小值称为线段 AB 到 $\odot O$ 的 "平移距离".

(1)如图,平移线段 AB 得到 $\odot O$ 的长度为1 的弦 P_1P_2 和 P_3P_4 ,则这两条弦的位置关系是_______;在点 P_1 , P_2 , P_3 , P_4 中,连接点 A 与点_______的线段的长度等于线段 AB 到 $\odot O$ 的 "平移距离";

- (2)若 A , B 都在直线 $y=\sqrt{3}x+2\sqrt{3}$ 上,记线段 AB 到 $\odot O$ 的 "平移距离"为 d_1 ,求 d_1 的最小值;
- (3) 若点 A 的坐标为 $\left(2,\frac{3}{2}\right)$,记线段 AB 到 $\odot O$ 的"平移距离"为 d_2 ,直接写出 d_2 的取值范围.

2020 年北京市高级中等学校招生考试数学


参考答案

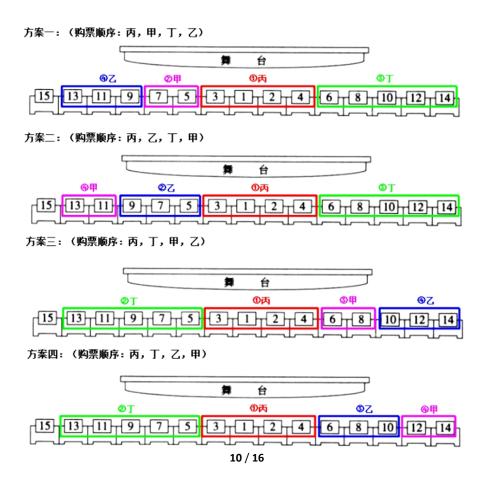

- 一、选择题(本题共16分.每小题2分)
- 第1一8题均有四个选项.符合肠愈的选项只有一个.

题号	1	2	3	4	5	6	7	8
答案	D	С	A	D	В	В	С	В

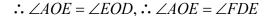
- 8. 【解析】: 设水面高度为: h , 注水时间为: x , $\therefore h = 10 + 0.2x$
- 二、填空题(本题共16分,每小题2分)
- 9. 【答案】*x* ≠ 7
- 10. 【答案】k=1
- 11. 【答案】3 (答案不唯一)
- 12. 【答案】 $\begin{cases} x = 2 \\ y = 1 \end{cases}$
- 13. 【答案】0
- 14. 【答案】BD = DC (答案不唯一)
- 15. 【答案】=

【解析】:"格点题型"算的上是近年来中考的必考题型了,试题难度不大。(下面给出了两种解析思路)

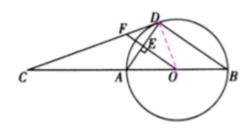
说明:①左图,根据图形可知 $\angle ACD = \angle BAC$,::AB / /CD


- :根据平行线间的距离处处相等,可得 $S_{AABC} = S_{AABD}$
- ②右图,延长 BA 交格点 M,连接 DM,∴DM = AB
- ::等底等高的两个三角形面积相等,可得 $S_{AABC} = S_{AABD}$
- 16. 【答案】丙,乙,丁,甲(答案不唯一)

【解析】:这是中考的"新题型",旨在考查同学们数学分析思维能力,也是中考改革的一大变化,体现了数学教学的精髓所在,也将会成为中考数学考查的一大重点方向。作为填空压轴题是非常不错的一道小题,题目分析:


- ①甲、乙、丙、丁四人购票, 所购票数分别为:2,3,4,5
- ②每人根据顺序购票座位号之和最小
- ③必须购买相邻座位
- ④丙第一个购票

写出一种满足上述条件的购票顺序即可?

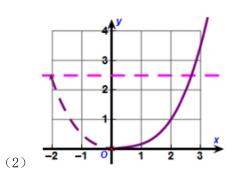

具体详解请参考下图给出的四种方案:

- 三、解答题(本题共 68 分, 第 17-20 题, 每小题 5 分, 第 21 题 6 分, 第 22 题 5 分, 第 23-24 题, 每小题 6 分, 第 25 题 5 分, 第 26 题 6 分, 第 27-28 题, 每小题 7 分)解答应写出文字说明、演算步骤或证明过程.
- 17. 【答案】=5
- 18. 【答案】1<x<2
- 19. 【答案】 -2
- 20. 【答案】∠BPC 同弧所对圆周角是圆心角的二分之一
- 21. 【答案】(1) 证明: 略
 - (2) OE = 5, BG = 2
- 22. 【答案】(1)解析式: y = x + 1
 - (2) m 的取值范围: $m \ge 2$
- 23. 【解析】
 - (1)解:连接OD
 - :: CD 是 ⊙O 的切线
 - $\therefore \angle ODF = 90^{\circ}$
 - $\therefore \angle FDE + \angle EDO = 90^{\circ}$
 - $\therefore \angle EDO + \angle EOD = 90^{\circ}$
 - $\therefore \angle FDE = \angle EOD$
 - \mathbb{Z} : $OA = OD, OF \perp AD$

- $\therefore \angle ADC = \angle AOF$
- (2) $\notin RT\Delta CDO + \sin C = \frac{OD}{OC} = \frac{1}{3}$

- $\therefore 3OD = OC$
- : AB 为 ⊙O 的直径

$$\therefore \angle ADB = 90^{\circ}$$
, 又 $\because OF \perp AD$ 于点 E, $\therefore \angle OEA = 90^{\circ}$


 $\therefore OF//BD$

$$\therefore \frac{OC}{BC} = \frac{OF}{BD} = \frac{3}{4}, \text{ BL} \frac{OF}{8} = \frac{3}{4}, OF = 6$$

在 $RT\Delta ABD$ 中,点O为AB中点,OF//BD

$$\therefore OE = \frac{1}{2}BD = 4, \therefore EF = OF - OE = 6 - 4 = 2$$

24. 【答案】(1) 减小 减小 减小

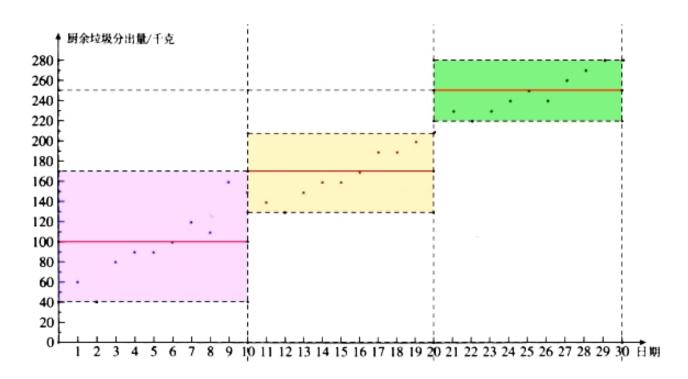
【解析】

(3)
$$m = \frac{7}{3}$$

解: 令
$$x = -2$$
 时,代入 $y = \frac{1}{6} |x| (x^2 - x + 1) (x \ge -2)$

$$\therefore y = \frac{1}{6} |-2| ((-2)^2 + 2 + 1)$$

$$y = \frac{1}{6} \times 2 \times 7$$


$$y = \frac{7}{3}$$

(2) 2.9

(3)
$$S_1^2 > S_2^2 > S_3^2$$

【解析】:

解析:第(3)问考查方差的意义,方差考查数据的波动情况,根据下图不难得出正确结论。

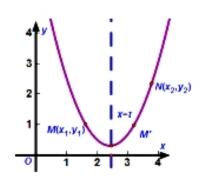
26. 【解析】: (1)当 $y_1 = y_2 = c$ 时

$$\therefore$$
 令 $y = c$ 时,代入 $y = ax^2 + bx + c(a > 0)$

$$\therefore c = ax^2 + bx + c(a > 0)$$

$$\therefore 0 = x(ax+b)$$

$$\therefore x_1 = 0, x_2 = -\frac{b}{a}$$


又:: 对称轴
$$x = -\frac{b}{2a} = 1$$
,即 $b = -2a$

$$\therefore x_2 = -\frac{-2a}{a} = 2$$

(2)作点 M 关于 x = t 的对称点 M' 设点 $M(x_3, y_1)$

$$\therefore x_1 + x_3 = 2t$$

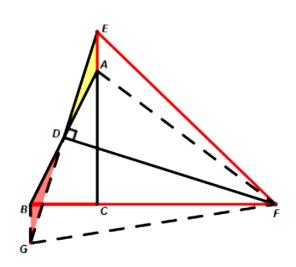
$$y_1 < y_2, x_1 + x_2 > 3$$

∴
$$x_1 + x_2 > 2t$$
, $\exists 2t \le 3, t \le \frac{3}{2}$

注:此时,是可以取等值的,一定要特别注意。

27. 【解析】(1)点E为AC中点时, \therefore D是AB的中点

$$\therefore DE//BC, DE = \frac{1}{2}BC$$


$$\therefore \angle C = \angle CED = 90^{\circ}, \angle EDF = 90^{\circ}$$

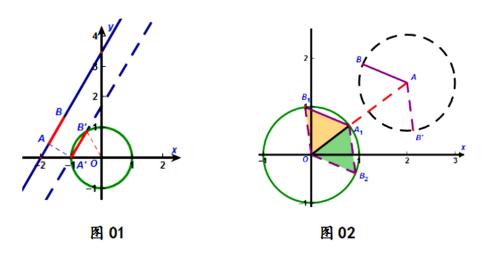
:. 四边形 DECF 为矩形

$$\therefore DE = FC = BF = b, AE = EC = DF = a$$

$$\therefore EF = \sqrt{b^2 + a^2}$$

(2) 延长 ED 到 G 使 DG = DE, 连接 BG

易证: $\Delta EDA \cong \Delta CDB(SAS)$, $\therefore DG = DE$ 、 AE = BG, $\angle DEA = \angle DGB$


∴可得: BG//AE,所以 $BG \perp BF$

在 ΔEGF 中, : DG = DE, $DF \perp EG$, : EF = GF (三线合一)

∴ 在
$$RT\Delta BGF$$
 中, $BG^2 + BF^2 = GF^2$ ∴ $AE^2 + BF^2 = EF^2$

28. 【解析】分析定义:

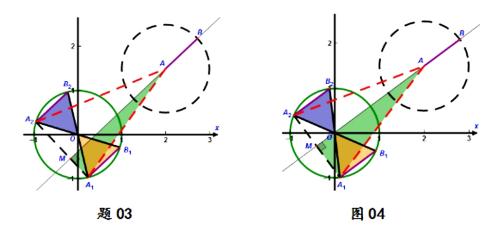
- ①平移线段 AB 得到 $\bigcirc O$ 的弦 A'B'(AB = A'B')
- ②线段 AA'的最小值即为线段 AB 到 $\odot O$ 的 "平移距离"
- ③ AB=1, $\bigcirc O$ 的半径为 1, : 当线段 AB 平移得到弦 A'B'时, $\Delta A'OB'$ 为等边三角形。
- 注:要特别注意是线段 AB 与弦 A'B'的对应点 AA'的最小值为"平移距离"。
- (1) 答案: 平行, P₃
- 注:这一问相对比较简单,同学们认真审题,一般不会出现问题。

(2)如图 01,线段 AB 平移得到弦 A'B'

:: A'B'=1, $:: \Delta A'OB'$ 为等边三角形

∴此时,AA'即为线段AB到 $\odot O$ 的"平移距离"

$$\therefore d_1 = \frac{\sqrt{3}}{2}$$


(3)①如图 02,连接OA,线段AB到 $\odot O$ 的"平移距离"最小值 $d_2 = \frac{3}{2}$

②线段 AB 到 $\odot O$ 的 "平移距离"最大值 d_2

说明:线段 AB 经过平移得到弦 A_1B_1 和弦 A_2B_2 这两种情况,其点 A 平移轨迹为 AA_1 、 AA_2 ,根据定义可知:线段 AA'的最小值即为线段 AB 到 $\odot O$ 的 "平移距离"。

・・此时,线段 AB 到 $\odot O$ 的 "平移距离"为 d_2 ,应为线段 $AA_{\!\scriptscriptstyle 1}$ 、 $AA_{\!\scriptscriptstyle 2}$,较小值。

・・ 当 AA_1 = AA_2 时,线段 AB 到 $\odot O$ 的 "平移距离"为 d_2 取得最大值。其最大值 d_2 ,的解题思路如下:

 $AA_1 = AA_2, AM \perp A_1A_2$

又: $\Delta A_1 OB_1$ 为等边三角形, $\therefore \angle A_1 OM = 60^\circ$

$$\therefore OM = \frac{1}{2}, A_1M = \frac{\sqrt{3}}{2}$$

∴ 在
$$RT\Delta A_1 AM$$
 中, $A_1 A_2 = \sqrt{A_1 M^2 + AM^2} = \sqrt{\frac{3}{4} + 9} = \frac{\sqrt{39}}{2}$

∴综上,
$$d_2$$
取值范围是: $\frac{3}{2} \le d_2 \le \frac{\sqrt{39}}{2}$